Source code for nbodykit.cosmology.background

import numpy as np
from scipy.integrate import odeint

[docs]class PerturbationGrowth(object): """ Perturbation Growth coefficients at several orders. 2-LPT is implemented. This implements the single fluid model of Boltamann equations. Therefore it is accurate only in a matter dominated universe. When background includes the radation contribution, the first order result is tuned to agree at sub-percent level comparing to a true multi-fluid boltzmann code under Planck15 cosmology. All derivatives are against ``lna``. .. note:: Formulas are derived from Yin Li's notes on 2LPT. Parameters ---------- cosmo: :class:`~nbodykit.cosmology.core.Cosmology` a astropy Cosmology like object. a : array_like a list of time steps where the factors are exact. other a values are interpolated. """ def __init__(self, cosmo, a=None): # assert cosmo.Ogamma0 == 0 # assert cosmo.Onu0 == 0 self.cosmo = cosmo self.efunc = cosmo.efunc self.efunc_prime = cosmo.efunc_prime self.Om0 = cosmo.Om0 self.Ogamma0 = cosmo.Ogamma0 # suggested by Yin Li, not so sensitive to a_H # as long as it is early enough. # I used this number to ensure best agreement with CLASS # for Planck15. (1e-4 rtol) self.a_H = 5.22281250e-05 if a is None: lna = np.log(np.logspace(-7, 0, 1024*10, endpoint=True)) else: a = np.array(a, copy=True).ravel() # ensure this is 1-d if 1.0 not in a: # ensure redshift 0 is in the list, for normalization a = np.concatenate([[1.0], a]) a.sort() if a[0] > 1e-7: # add a high redshift starting point. a = np.concatenate([[1e-7], a]) lna = np.log(a) self.lna = lna self._D1, self._D2 = self._solve()
[docs] def D1(self, a, order=0): """ Linear order growth function. Parameters ---------- a : float, array_like scaling factor order : int order of differentation; 1 for first derivative against log a. Returns ------- array_like : linear order growth function. """ lna = np.log(a) return np.interp(lna, self.lna, self._D1[:, order])
[docs] def D2(self, a, order=0): """ Second order growth function. Parameters ---------- a : float, array_like scaling factor order : int order of differentation; 1 for first derivative against log a. Returns ------- array_like : second order growth function. """ lna = np.log(a) return np.interp(lna, self.lna, self._D2[:, order])
[docs] def f1(self, a): """ Linear order growth rate Parameters ---------- a : float, array_like scaling factor order : int order of differentation; 1 for first derivative against log a. Returns ------- array_like : linear order growth rate. """ return self.D1(a, order=1) / self.D1(a, order=0)
[docs] def f2(self, a): """ Second order growth rate. Parameters ---------- a : float, array_like scaling factor order : int order of differentation; 1 for first derivative against log a. Returns ------- array_like : second order growth rate. """ return self.D2(a, order=1) / self.D2(a, order=0)
[docs] def Gp(self, a): """ FastPM growth factor function, eq, 19 """ return self.D1(a)
[docs] def gp(self, a): """ Notice the derivative of D1 is against ln a but gp is d D1 / da, so gp = D1(a, order=1) / a """ return self.D1(a, order=1) / a
[docs] def Gf(self, a): """ FastPM growth factor function, eq, 20 """ return self.D1(a, 1) * a ** 2 * self.E(a)
[docs] def gf(self, a): """ Similarly, the derivative is against ln a, so gf = Gf(a, order=1) / a """ return 1 / a * ( self.D1(a, 2) * a ** 2 * self.E(a) \ + self.D1(a, 1) * ( a ** 2 * self.E(a, order=1) + 2 * a ** 2 * self.E(a)) )
[docs] def E(self, a, order=0): """ Hubble function and derivatives against log a. """ if order == 0: return self.efunc(1./a - 1.0) else: return self.efunc_prime(1./a - 1.0) * a
def Hfac(self, a): return -2. - self.E(a, order=1) / self.E(a) def Om(self, a): z = 1./a-1 return self.cosmo.Omega_b(z) + self.cosmo.Omega_cdm(z) # non-relativistic def ode(self, y, lna): D1, F1, D2, F2 = y a = np.exp(lna) hfac = self.Hfac(a) omega = self.Om(a) F1p = hfac * F1 + 1.5 * omega * D1 D1p = F1 F2p = hfac * F2 + 1.5 * omega * D2 - 1.5 * omega * D1 ** 2 D2p = F2 return D1p, F1p, D2p, F2p def _solve(self): a0 = np.exp(self.lna[0]) Om = self.Om(a0) if Om > 0.99: # matter dominated initial conditions y0 = [a0, a0, -3./7 * a0**2, -6. / 7 *a0**2] elif Om < 0.01: a_H = self.a_H D1i = np.log(a0 / a_H) # radiation dominated initial conditions y0 = [ D1i, 1.0, -1.5 * Om * (D1i ** 2 - 4 * D1i + 6), -1.5 * Om * (D1i ** 2 - 2 * D1i + 2)] else: raise ValueError('Neither matter or radiation dominated initial condition. Om(a_i) = %g.' % Om + 'This shall not happen for a reasonable cosmology.') # solve with critical point at a=1.0, lna=0. y = odeint(self.ode, y0, self.lna, tcrit=[0.], atol=0) v1 = [] v2 = [] for yi, lnai in zip(y, self.lna): D1, F1, D2, F2 = yi D1p, F1p, D2p, F2p = self.ode(yi, lnai) v1.append((D1, F1, F1p)) v2.append((D2, F2, F2p)) v1 = np.array(v1) v2 = np.array(v2) ind = abs(self.lna).argmin() # normalization to 1 at a=1.0 v1 /= v1[ind][0] v2 /= v2[ind][0] return v1, v2